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ABSTRACT

This thesis theoretically presents the phenomena in-

volved in the flow of an incompressible fluid over a wedge

with a second i Mpressible, lighter, and less viscous

fluid blown through the surface of the wedge. A method is

developed to determine the inner fluid layer thickness, the

wall shear stress and the resulting local drag reduction.

The results predict substantial drag reduction.
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LIST OF SYMBOLS

C constant

&internal energy

f (n ) dimensionless stream function inner-fluid

fL(nL) dimensionless stream function outer-fluid

g(x) scale factor for y

K integration constant

L reference length

M constant defined by --

I; mass flow rate

P local pressure

PR Prandtl number

P STAG stagnation pressure

Q heat into the system

R fluid properties ratio defined by R (

Re Reynolds number

Rq gas constant

T local temperature

Tw  wall temperature

Tw temperature in the free stream

u velocity component tangential to surface

U (x) potential speed

Um reference speed
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v velocity component normal to surface

vw  blowing velocity at the wall

w velocity component normal to u and v

w velocity

W work done by the system

x arc length along the surface

X body force in x-direction

y direction normal to surface

yl dumy variable for f

y2 dumay variable for V

y3 dummy variable for f"

Y body force in y-direction

z direction normal to x and y

Z body force in z-direction

similarity constant given by L (x) dW(x)g(x))

8 "dimensionless" wedge angle (angle is off)

6 (x) boundary layer thickness

n dimensionless similarity variable

ngi  dimensionless inner fluid layer thickness

9dimensionless parameter

p mass density

Idynamic viscosity

v kinematic viscosity

*stream function

shear stress
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shear stress at the wall

S0 reference shear stress
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I. INTRODUCTION

The ever increasing operating depths and speeds of modern
submarines and the much higher resistance to the effects of

contact or nearby underwater explosions all require a dra-

matic increase in the speed of underwater weapons. The

existing power plant systems seem to have reached their

limits in power density and radical changes in body shapes

are limited by launching facilities. The answer might lie

in the field of boundary layer control. Possibilities are

injection of polymers into the boundary layer to maintain

laminar flow, suction to remove potential turbulence, more

sophisticated weapon shapes to reduce form drag, or intro-

ducing a gas layer between the surface of the body and the

liquid.

Of all the options, the two-phase boundary layer seems

to be the most promising possibility for obtaining an order

of magnitude increase in speed.

In this thesis, a method is developed to calculate the

properties of the laminar, two-phase flow produced by in-

jecting a light, incompressible low-viscosity fluid into the

boundary layer of the incompressible flow over a wedge. This

is just a stop on the long way to a high speed underwater

weapon.

10



II. BACKGROUND

A. DISCUSSION OF RELATED PAPERS

An extensive literature search was carried out and the

relevant papers are discussed below. The reduction of drag

by use of polymers is deleted from this survey because the

drag reduction expected by this method is probably not suf-

ficient to increase the maximum speed of the underwater

vehicle substantially. Amazingly enough, the most recent

paper in the field of two-fluid laminar boundary layer flow

was published back in 1969.

1. J. Pretsch [1]

Pretsch starts with Prandtl's boundary layer equa-

tions for single-phase flow with suction or blowing:

au au U 2 Ux 0

and boundary conditions y - 0: u - 0, v - vw; yV-Re- - : u-0

where u is the velocity tangential to the surface, v is the

velocity normal to the surface, x is the arc length along

the surface, y is the normal to the surface, U(x) is the po-

tential velocity, v is kinematic viscosity, Vw(x) is the

normal velocity or blowing velocity at the surface and Re is

Uxthe Reynolds number, Re - --

" 11
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For strong suction (v0  mo-) the above equations

simplify to a second order, ordinary differential equation

of the form

d2u du whee Vw-d2u+ du= 0 where ------

and boundary conditions - 0 : u = 0

- : u = U(x)

The solution of this equation is the velocity profile

U (x)-

For strong blowing (v w  w ) the assumption is made

that the viscosity term can be neglected and the above equa-

tions again simplify to a second order, ordinary differential

equation but now nonlinear.

For a number of values for similarity parameters,

Pretsch gives analytical expressions for solutions of flat

plate and wedge flow.

The assumption of negligible viscosity is too re-

strictive for the case under investigation in this thesis.

2. E. J. Watson [2]

This extensive report consists of three parts, i.e.

Theory of Similar Velocity Distributions, Flow with Uniform

Suction, and Flow with Variation of Suction Velocity. The

report is based on the asymptotic theory of boundary layer

12



flow. Although the author is aware of the existence of

Pretsch's work, no comparison of results is made.

In Part I the author arrives at a number of tables

giving velocity distribution and coefficients of the series

expansions as functions of similarity related constants and

dimensionless parameters.

In Part II the similarity principle is abandoned but

the suction velocity is uniform. The velocity is expanded

into a series from which series for momentum and displace-

ment thickness and skin friction are derived. In tho sub-

sequent section a number of applications are investigated

and the results are totalized in a number of tables.

In Part III the asymptotic theory is extended to

cover general two dimensional flow with arbitrary distribu-

tions of mainstream velocity and suction velocity. The

results are again displayed in tables. The author also de-

rives the results in Part I as a special case of Part III.

As this report only deals with suction it is not of

direct interest to this study.

3. R. D. Cess and S. M. Sparrow [3]

This paper deals with a two-phase flow in forced

convection over a flat plate. The inner fluid is obtained

by boiling the outer fluid at the wall so that a vapor film

is formed. The authors arrive at the following conservation

equations:

13



f i,, + f f to M 0

0'' + PR f8' -0 where e T T

f oIl + f ff t  0

with boundary conditions:

plate surface: f (O)-,f '(0) -,0, SO) M 1

interface: f L(0) a) fg(gj)

f (0) - fgf (tog)

e(na) - 0

free stream: fL'' 2 as nL

where f and fL are the stream functions for respectively

inner and outer fluid, T is the local temperature, Tw is the

temperature at the wall, T, is the temperature in the free

stream, PR is the Prandtl number, P is the mass density and

. is the dynamic viscosity. f is a function of the dimen-
9 1T

sionless parameter ng defined by ng - f -'3W.?x. n is the

value for this parameter at the interface of the two fluids.

fL is a function of the dimensionless parameter nL defined

by nL " - 4 The subscripts L and g refer to respective-

ly outer and inner fluid. The primes denote differentiation

with respect to the relevant dimensionless parameter. This

14



problem is solved by using an EZions-Leigh (4] table and a

successive approximation procedure.

4. K. Nickel (5]

In this paper, the laminar flow of an incompressible

fluid without heat transfer is investigated using a method

of bounding the solutions applied to Prandtl's equations.

After introducing the well-knwwn dimensionless parameters n

and f(n), Prandtl's partial differential equations reduce to

the ordinary, third order non-linear differential equation:

f''' + ff'' + 8(1 - f,2 ) = 0

with boundary conditions: f(0) f 0

f'(O) - 0

f' 1

The solutions are reflected in a number of graphs,

especially "abbildung 8" giving f''(0) as a function of B

and f0 will prove to be very useful in this thesis.

5. R. D. Cess and E. 1. Sparrow (6]

This paper is an extension of the paper discussed in

Section 3 above and deals with the case of a subcooled fluid.

To extend the earlier results it was necessary to consider

the conservation of energy within the fluid. The results are

again reflected in a number of figures.

6. Z. M. Sparrow. V. K. Jonseon and E. R. G. Eckert [7]

In this paper the laminar two-phase flow, obtained by

injecting gas into a liquid at the wall of a flat plate, was

15
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investigated. The authors arrive at the following ordinary

differential equations

for the gas: fg,,, + fgfgt 0

for the liquid: fL''' + fLf L' W 0

with boundary conditions:

at the wall: f (0) - go (blowing parameter)

f 9 (0) - 0 (no slip condition)

at the interface: fg(n gi) - - 0 (no mass transfer)

fg''(Tgj) - R fL' ' 0 (stress continuous)

7 where Ru a.~ L

fg ngi f L' 1(0) (velocity continuous)

for nL * : fL (L * 2 (velocity approaches U.)

The authors sol.ve these equations by applying a

series expansion and subsequently a successive approximation

procedure, similar to the one described in the paper by Cess

and Sparrow (Section 3 above).

The results are given in a table and a graph. It is

proven that evaporation at the interface only works

advantageous.

7. H. P. Zichenberger and J. D. Offutt 18]

Under assumption of

- shear stress in liquid is negligible

- interfacial velocity and pressure distribution are those
imposed by the potential flow

16



- the inertia of the gas is negligible

- the gas flow is laminar

- body moves steadily through water at zero incidence

- gas and water properties are constant; in particular the
density of the gas remains constant

the problem of a two-phase flow over different kinds of

bodies is solved by a finite differences method. Results

are given in a number of graphs.

8. w. S. raUdfield, R. 0. Barkdoll and J. T. Byrne [9]

This paper discusses experiments with a "gassing"

model to investigate possible drag reductions. The vapor

layers were obtained by film boiling, sublimation of a solid

surface and chemical reactions. The experiments indicated

that for film boiling a region exists for which a stable

vapor layer may be expected.

Assuming

- steady, two dimensional laminar flow

- pressure everywhere constant

- heated surface temperature constant

- temperature of liquid vapor interface is equal to satu-
rated liquid temperature

- thermodynamic and transport properties of liquid and
vapor are constant

- thermal radiation effect on vapor and liquid layers is
neglected

- buoyancy effect on forced convection boundary layers is
neglected

- velocity and temperature profiles are linear in vapor and
parabolic in liquid

17



and using the Pohlhausen integral method the results of the

experiments are predicted. In some of the experiments dra-

matic instabilities were found, and the authors had to con-

clude that producing a stable vapor layer between a surface

and a liquid drastically reduces friction drag but unstable,

two-phase flow (like nucleate boiling and uncontrolled sub-

limation) may actually cause the drag to increase.

9. T. J. (ang (10]

In this patent Lang *designed" a torpedo capable of

using the gas film drag reduction phenomena. The lift is

provided by the body shape and the exhaust gases are used to

produce the gas layer. At the rear end of the torpedo the

gas layer is removed by suction.

10. B. R. van Driest (11]

The author indicates that the quest for higher

speeds of underwater craft can be sclved by using the knowl-

edge acquired in high speed aerodynamics.

In a number of figures the author gives local fric-

tion coefficients as a function of Reynolds number, speed,

wall temperature and ocean depth. Further effects of hydro-

dynamic heating, cavitation and insertion of additives are

discussed.

The author concludes that although the propulsion

systems have to be developed, it is, in principle, possible

to obtain high velocities for underwater vehicles.

18
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B. QUO VADIS

Considering the above discussion it was felt that more

knowledge had to be obtained of the phenomena taking place

in the two-phase boundary layer. A first step would be to

extend the work on flat plates to two-dimensional bodies

with pressure-gradients. It is logical to follow the paper

of Sparrow, Jonason and Eckert (7], discussed above in Sec-

tion A-6.

19
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I1. THEORY

A. GOVZRNING EQUATIONS

To predict the skin friction and drag characterics from

first principles the starting position is based on the basic

conservation laws governing the velocity distribution, here

in Cartesian coordinates,

Continuity: x + y z

DU ap a( au 2 di i
navier-Stakes: p X - + T

a au avl aFU(av +ul
+ ,l [Ue( + atoJ + rP

Dv a a v 2 i *]
M Y ry+ ra U(2r di

av + aw + aU(u+a)

Dv a 2ra div -o)1
PD r z r z -!j

a a" raw + aull a [r(av +vi

Em of State: P aP Rg T

U = u(P#T)

where yi thevo cit wit copnet u, v, w in respec-

tively the x, y and z direction, Dt is the operator

+ abx + aVrY ,r X, Y and Z are the body forces in

20



I- 
- -.

respectively x, y and z directions, P is the local pressure,

R is the gas constant, Q is the heat into the system, ET is

the internal energy and WJ is the work done by the system.

Assuming steady state, absence of body forces, viscosity

P(T,P) is constant, two-dimensional flow, i is negligible,

laminar flow, and both fluids incompressible (the energy

equation decouples), these equations simplify to the Prandtl

boundary layer equations:

au 3vContinuity: T'_ + = 0

Navier-Stokes: au + 3u 1 a 2 u

Using the subscript g for properties of the inner fluid and

the subscript L for the outer fluid, it is possible to write

two sets of equations describing the two-fluid laminar

boundary layer.
3u 3v

Inner fluid: -+ M 0 (1)

3u au 1 3P + i2 (2)

Outer fluid: a + 3 - 0 (3)

3u au I a + a 2u
ay

To describe the problem fully, however, it is required to

state the boundary conditions and the conditions at the

interface between the two fluids. At the wall, in the inner

21
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7' -- 71 . . - . -

fluid, the velocity parallel to the wall, u, is zero (no

slip) and the velocity perpendicular to the wall is equal to

the imposed blowing velocity. At the interface the tangen-

tial velocity and shear stress have to be continuous. Fur-

thermore, the mass transfer across the interface is assumed

to be zero. In the outer fluid u has to approach U(x) as y

approaches infinity. A formal statement of these conditions

is:

aty-0 u -0

V mVw

at interface ug - uL

4g
- uL1

-0 or V9 (interface) -v L (interface) -0

in outer fluid u . U(x) as y - -

For the given assumptions, equations 1-4 and the boundary

conditions describe the problem completely. This system pre-

sents substantial difficulties in attempting a general solu-

tion. Similarity solutions, however, will solve the deadlock.

B. TRANSFORMD EQUATIONS

Similarity-type solutions are well known and have the

characteristic that the velocity profiles have similar shapes

at all x-positions along the surface. Mathematically this

gives the enormous simplification that the governing partial

22
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differential equations are converted into ordinary differen-

tial equations. Before defining the dimensionless para-

meters it should be noted that the continuity equations are

satisfied by the stream-function i defined by

U =a*and v - a~

Following Schlichting (121, the following dimensionless

par asmters can be introduced for the inner fluid:

U L
Reynolds number Re - (where U. and L are some

g g (

reference quantities)

g -g -9 (where g(x) is a dimensionless scale

factor for y)

f(ng, g) -"U) or (x,y) - f(n, L U W q W
g )' x g gzg/ 1 j-

To simplify further manipulation, it is wise to state at

this point that to ensure similarity f(n g, ) can not depend

on C = E(x) so that f = f(n 9).

From the above, the velocity components may be derived,

u U(x) f' (rg)

L f ( a) dW
and v - a (U x) g(x)) + /-)L n f1 (ig)qgxg)

Inserting these expressions into the Prandtl boundary layer

equation and after a considerable amount of algebra the equa-

tion converts into

23



f fg'' + afgfg' + 8(1 fg,2 )= 0

where 9 (x) d(U(x) g(x))

L g2 (x)

Reasoning in the same way for the outer fluid after

defining

,.' i fL~rlL' L I U(x) g(x)one arrives at

+ ,(I+ - ,L2)
fL' + 8(1fL ,  - 0

where u and are defined the same as for the inner fluid.

It should be noted that to satisfy the similarity re-

quirement and 8 should not depend on x. Still following

Schlichting (121, it is possible to arrive at the following

il general conditions for U(x) and g(x):

2 8
Rex = F n - X 6 W_

U~ .K '" L2ci where K is an integration constant

I UU2
g(x) - . (2c - S(x)

Now, without loss of generality, take ct - 1 and introduce a

new constant zu - so that the expressionsfoU(xan

g(x) convert to

qurmet a2n4 hudno eedo . tl olwn

224
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..,7v TT.2T,*.., **- *.,I **.

U (x) - (1+m) 2 x

g (X) 2=7 X 00%X

Furthermore, the transformation equations for the ordinates

are M UX and nL (y6) , U(x)

With Schlichting (12], it can be noted that these re-

quirements can be satisfied by the flow in the neighbourhood

of the stagnation point of a wedge with included angle B7T,

where U(x) is given by Cxm.

Next the boundary and interface conditions have to be

converted by expressing them into the newly defined dimen-

sionless parameters

At y- 0

or Tjg 0 u - U(x) fg'(n) 0 or f (0) = 0

v M vw M -L f() dg(x)9 9 L d(U(x) -5x)

or f ( ) - -vw / -

dx

at interface n- 9i n - 0 or f (ng i ) - L(0) 0

nL M0

ug - uL or fg ' (gi) f LIM

du duL J (Q.)L, . - gL or f, . ,. 1 ,'(0) where R L

for y- or nLo u.U(x) or fL' 1 as nL

25
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It should be noted that

- to ensure that f (ng ) is independent of x:

Vw 1% d(U(x) g(x)) , Inserting the expressions for U(x)dx

and g(x) one obtains vw

- R depends on the properties of both fluids depending on

temperature and pressure.

Summarizing the problem can be formally stated by

equations: f ' + f fg ' + B(I - f g 0 (5a)

+ + a(, _ f 2) = 0 (5b)fL ' L fL' + ( 9

and conditions: f '(0) = 0
g

(02 x where vw Xfg (0) = v w  (re+l) 2U U(x) weeVw,

f (n () 0
g gi L

fg '(ngi f L'(0)

f'' ( ) = R f '(0)

g giL

fL' ( L  - 1

26



IV. EXPLORED WAYS OF SOLUTION

A. SERIES SOLUTION

Following the procedure of Sparrow, Jonsson and Eckert

[7], a series solution of the momentum equation seems to be

appropriate. Expanding f (ng ) with respect to ng - 0 gives

fc ' (O)n 2 '(O) n 3

,g g g,+fqf (ng -fg(0) + fg (0)n 1 (g 2 +2! 311 n 3

The first two terms in the expansion are available from the

boundary conditions. The f ''(0) is unknown for now and will

be determined by the solution. Higher derivatives can be

expressed in terms of lower derivatives by taking sequen-

tially derivatives of both sides of the momentum equation

f'' - -f f'' - $(G - f12)

and evaluating at ng= 0.

Some expressions for derivatives are:

f (111) (0) -f(0)f'' (0) -

f(IV) (0) - f2 (0)f''(0) + Bf(0)

f(V)(0 ) - -f 3 (0)f,(0) - 8f2 (0) + (2$-1)f'' 2 (0)

f(VI)(0) . f 4 (0)f''(0) + $f 3 (0) - (88-5)f(0)f,,2 (0)

- (6$-4) f' '(0)

27



It was impossible to find a recurrency in the expressions.

On applying the interface condition f(n i) - 0 makes it pos-

sible to write

f '(0) - -f(0)
gg,

2n +II
*1gi + a f_ (0)k

k=3 g

It is now possible to express f9 ''(0) in liquid and gas para-

meters. Here Sparrow, Jonsson and Eckert refer to an earlier

paper by Cess and Sparrow [3]. This paper is discussed in

Chapter II, Section A3. This paper gives a table relating

f (0) and fL'' (0) which corresponds to a solution of the

equation for a flat plat.

At this point it was realized that the data necessary to

go any further was not available, therefore this method was

abandoned, and other methods of solution were explored.

B. NUMERICAL SOLUTIONS

1. IODE [131

IODE is an interactive ordinary differential equation

solver developed by the Computer Center of the Naval Post-

* graduate School. The program accepts a number of first order

non-linear ordinary differential equations with associated

initial conditions and solves the equations.

In this case equations 5 were converted into:

*dyl
. ." y 2 " f '  Note: yl f (6a)

28

4.5 ?.*.*...* . . . . . . . . . . . . . . . . . . . . . ..-.. ..-. . . . .... . . . .. .. - : :.:: -. ,: : 7- .: .. :-.:: : . . , .:- . . :..i ::



hi
d Y " fi' (6b)

dY3 2 (6c)
f - -ylY3 8 + y2 (6c)

where yl' Y2 and Y3 are dummy variables for the derivatives

of f(n), with initial conditions

y1 (O) , f(O) (7a)

Y2 (O) - f'(0) (7b)

Y3 (O) , f''(O) (7c)

The equations 6 are the same for both fluids but as noted

before the initial conditions differ.

Sanders (14] suggested that it should be possible to

guess the thickness of the inner fluid layer ngi and then a

value of f q "(0) could be found by trial and error so that

no mass transfer occurs across the interface (fg(ngi ) - 0).

The values for f9 , f'q and f'' at the interface give the

initial conditions for the outer fluid equations 6. The

values of fL' (n) should approach unity for large enough nL

while fL''(nL) approaches 0. If fL' 1(nL) does not go to unity

the initial guess for the layer thickness was wrong and

another value for the inner fluid layer thickness n gi is

chosen. This process is repeated until a layer thickness is

found for which f 1 and f- 0.

The calculations carried out on the IBM 3033AP com-

puter system showed that this procedure worked, but while the
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calculations were fast the interactive side of the program

has proven to be too time consuming.

2. Desk Top Computer

So the necessity arose to find some way to decrease

the time spent coomunicating with the computer and to auto-

mate the trial and error process. Furthermore, it was

necessary to find some way to interrupt the execution and

to execute the program by steps to determine instabilities

in the solution.

Since a Wang 2200 desk-top computer with line printer

was available, the problem was rewritten for this computer

and the solution for a number of cases was carried out. It

has to be realized that a desk-top computer is relatively

slow so that a compromise between calculation time and ac-

curacy of the result had to be found. It was decided that

the primary goal was to find la method of solution and not to

tabulate a large amount of accurate data. In the light of

all the assumptions high accuracy would be doubtful anyway.
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V. SOLUTIONS

A. DEFINITION OF THE PROBLEM

The momentum equation will be written as three first

order differential equations as for the "lODE program":

dy1
- -y2 f '

dY2
--- y 3 ,,f'

dY 3  2

W o- -y1 y3 - a - By 1

Now multiplying both sides of these equations by dn and

changing to finite differences one arrives at

Ayl a Y2"*An

AY2 n Y3@an

Ay 3 = (-yl.y3 - B - Byl2) -an

.ow by stepping n through the desired range of values,

starting with known or guessed initial values for n g, y 1 ' Y2

and Y3 it is possible to calculate yl, y2 and Y3 as a func-

tion of n.

It has to be noted at this point that we approximate the

integrals by a "Lower Riemann Sum". It is known, however,

that using a "sufficient" number of steps guarantees a satis-

factory accuracy. This procedure is applicable for both the

inner and the outer fluid. The initial values for the outer
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7..

fluid follow logically from the solution of the inner fluid

and the interface conditions.

Given values for the blowing parameter f (0) and the9

properties of the fluids parameter R the procedure is as

follows:

- Choose an inner fluid layer thickness.
- Find f"(0) by an interval halving method so that fln i)

(no mass transfer across the interface) equals 0, or 9
in our program is smaller than a chosen value.

Note: f(O) - given: f'(0) - 0 and f''(0) is chosen as
indicated.

- Apply the interface conditions on the values for f, f'
and f'' at the interface to find the initial values for
the solution of the outer fluid equations. Choose an
end value for nL large enough to be well "outside" the
boundary layer.

- Check if f I but also if f ''(-) .0 as it-is
possible that an unstable solutioh is found. In case
the conditions are satisfied the solution is found. If
not another guess on the inner fluid layer thickness has
to be made.

- The value of the inner fluid layer thickness is chosen
in another interval halving process.

- This process is repeated until the requirements of
f L ( 1 and f L "M)a 0 are met.

A copy of this program is enclosed as Appendix A.

From the above, it follows that the initial intervals

for f "(0) and have to be determined. The interval for9 ngi

qgi should be as narrow as possible and the interval for

f'"(0) should be a little wider than expected to prevent in-

stabilities and "limit-riding". These values were determined

by trial and error and the results are discussed in a later

chapter.
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B. TESTING THE PROGRAM

1. Number of Steve of Independent Variable

The program is used with 100 steps of the independent

variable. A sample problem was solved with both 100 and 200

steps. The deviations were in the fourth decimal (see Table

5.1). The time required for the calculation however was

doubled from approximately 45 minutes to 90 minutes.

2. One Fluid Flow

It is clear that when R approaches unity, the two

fluids are hydrodynamically identical. Computer solutions

were obtained for a single fluid flow for B - 0 (flat plate)

and B - 1 (stagnation flow) and further for B - 0.2, 0.4,

0.6 and 0.8. The results were in good agreement with Nickel

[5], "abbildung 8. (See Table 5.2.)

3. Solution for R Close to 1

A solution with a R of 1.1 was compared to that for

a one-fluid problem and the results were close enough to

give further confidence in the correctness of the program to

handle non-unity values of R. (See Table 5.3.)

4. Solution for Small Wedge Angles

• The solution for a B of 0.01 was close enough to that

of the flat plate to give confidence about the capabilities

of the program to correctly handle non-zero values of B.

(See Table 5.4.)
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VI. RESULTS

3 A. DEFINITION OF A SAMPLE PROBLEM,

To demonstrate the capabilities of the program, a special

case was chosen for thorough investigation. For this case,

"air at standard conditions" and water were chosen as the

two fluids so that R a 200. For a range of blowing para-

meters f (0), and wedge angles B, the velocity profile was

calculated and the layer thickness n of the inner fluid

and the shear stress parameter f ' (0) at the wall were

determined.

B. THICKNESS OF THE INNER FLUID LAYER

Figure 6.1 gives the dimensionless thickness of the inner

fluid layer ngi as a function of the blowing parameter f (0)

for various wedge angles S. Figure 6.2 is an enlargement of

these curves for small blowing-parameters. These graphs lead

to the following observations:

- For small values of the blowing parameter the curves are
straight lines, n i decreases very little with increasing
wedge angle and il directly proportional to f (0).

9

- For larger blowing parameters f9 (0), n i increases more
rapidly with increasing f (0). For large blowing para-
meters and small angles the thickness of the inner fluid
layer increases drastically with increased blowing
parameter.

- For large values of the blowing parameter, the thickness
of the inner fluid layer decreases rapidly with increas-
ing wedge angle S.
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C. WALL SHEAR STRESS

Figures 6.3 and 6.4 give the dimensionless wall shear

stress f ''(0) as a function of the blowing parameter f(O)

and the wedge angle B.

- For all values of wedge angle B, blowing decreases the
wall shear stress fg''(0). This reduction is spectacular
for small values of the blowing parameter; e.g. for both
the flat plate (B - 0) and stagnation flow (B - 1)
fg 9(0) is reduced to half the non-blowing value when
f (0) m 0.0025.

- For all values of the blowing parameter the wall shear
stress f'' (0) increases with increasing wedge angle B;
the smaller thickness of the inner fluid layer caused by
the higher potential velocity.

- For large values of the blowing parameter, the wall shear
stress is very small and nearly equal for all wedge
angles. The values obtained indicate that the wall shear
stress for large blowing parameters approaches the wall
shear stress for a wedge in an infinite volume of inner
fluid. (See Table 6.1.)

D. VELOCITY PROFILES

Figure 6.5 gives velocity profiles (f'n() vs. n) for

various blowing parameters for a wedge angle B - 0.2 (368).

The nL and n have been expressed in the same relative scale
(YR6 L

by noting that Y and nL resulting inbynoig ht g L g~x = (x)

The following observations can be made-

- For the smaller blowing parameters the velocity profiles
in the inner fluid are nearly straight lines.

- The stronger the blowing the thicker the layer of the
inner fluid causing a larger proportion of the potential
velocity to be obtained in the inner fluid layer. For
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mall blowing parameters this proportion of the potential
velocity increases rapidly with increasing blowing para-
meter. Figure 6.6 gives the proportion of the potential
velocity (or fq (n i ) )) as a function of the blowing para-
meter f (0).

- Particularly interesting is the fact that the velocity
profiles in the inner fluid and the outer fluid have op-
posite curvatures. This is comparable to the boundary
layers associated with the gas-filled cavity attached to
a body after water entry. The cavity around such a body

has a stable interface; breakdown occurs only when too
much gas is left at the rear separation. Although no
rigorous proof can be given it is felt that this charac-
teristic of the velocity profile provides stability of
the interface in two fluid boundary layer flow.

E. DRAG REDUCTION

To characterize the amount of drag reduction, the local

drag parameter f ''(0) obtained for the two fluid flow was

compared to the local drag parameter obtained without

blowing.

To compare these local drags, a minor converson has to

be made. The shear stress at the wall is

T (,d d I

In terms of the transformed variables, the expression for r

becomes

T /TO- (f"()) n
.9 L g(x)

which can be expressed in the outer fluid parameters

u(x) f' ''h)T = -4 L L x)/L"g()
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For the outer fluid, without blowing, the reference shear

stress is:

0 "-U (lx) /L(fL (n)no

f (O)0=O

Now taking the ratio:
fL f 10)

0 R(fL''(O))fg() - 0

The values of this reference shear stress parameter fL' (0)

are calculated and reflected in Figure 6.7. Since R is a

krown constant, for each value of the shear stress parameter

f '' (0) it is possible to determine the ratio T/T0. Table

6.2 gives the values of T/T0 as a function of wedge angle 8

and blowing parameter fg (0) for R - 200.

Inspection of this table reveals that a drag reduction

is observed for all blowing parameters and wedge angles. It

is remarkable that for small values of the blowing parameter

the ratio decreases for increasing wedge angle 8 while

for large values of the blowing parameter f(0) the ratio

T/T0 increases with increasing wedge angle 8. For all wedge

angles 8, however, the ratio T/T 0 decreases with increasing

blowing strength.

F. REQUIRED POWER

The power required to maintain blowing is

Power - P • Vw

where P is the local pressure given by

37
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- PSTAG + x

where PSTAG is the stagnation pressure at the leading edge

of the wedge and UP- _p d=-P C2 mx 2 m- 1 < 0. If theax gUK g

inner fluid is at stagnation pressure P STAG a pressure dif-

ference of a at the wall exists so that the fluid flows out

by itself. The flow rate then can be controlled by the

blowing hole's size. Of course, the ejected fluid has to be

replaced requiring it to be brought up to PSTAG* In practice

this is of less interest as a considerable amount of exhaust

gases of the propulsion systems at high pressures should be

available.
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*.' VII. CONCLUSIONS AND RECOMMENDATIONS

It has been shown theoretically that a dramatic drag

reduction is possible for the infinite wedge by blowing with

a lighter and less viscous fluid, and that the parameters

involved can be calculated with relatively simple means.

Furthermore the developed method gives another way of solving

the flat plate case and the stagnation flow case.

This work directly invites a number of follow-on investi-

gations of phenomena associated with:

- finite two-dimensional bodies

- three-dimensional bodies

- a compressible inner fluid

- experimental verification of the theory

- stability of the interface

all of equal importance.
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APPENDIX A

"BASIC" PROGRAM FOR WANG DESK TOP COMPUTER

TO SOLVE TWO FLUID LAMINAR FLOW CHARACTERISTICS

I REM THIS PROGRAM IS DESIGNED TO CALCULATE FvF'qF
2 REM AND NGI FOR A TWO-LIGUID-LAMINAR-BOUNDARY-LA ER
3 REM GIVEN A 1LOWING-PARAMETER F(0),A WEDGEANCLE B AN
4 REM A LIGUIO-PROPERTIES-CONSTANT R.
S REM
6 REM TO USE THE PROGRAM ONE HAS TO GUESS ON AN INITIAL
7 REM INTERVAL FOR THE INNER-FLUID-LAYER-THICKNESS AND
8 REM FOR THE LOCAL SHEARSTRESS-PARAMETER F" (O).THESE
9 REM VALUES CAN BE OBTAINED FROM GRAPHS IN THE THESIS.
10 REM ONE HAS TO TAKE THE INTERVAL FOR THE THICKNESS AS
11 REM SMALL AS POSSIBLE AND THE INTERVAL FOR THE SHEAR-
12 REM STRESS A LITTLE BIT LARGER THAN EXPECTED TO PREVENT
13 REM INSTABILITIES AND LIMITRIDING.
14 REM
1S REM IN SHORT INSERT VALUES FOR
16 REM - F(O) AS GI(1),LOWER LIMIT OF F'(O) AS G6 AND
17 REM - UPPER LIMIT OF Fo(0) AS G7 IN LINE 120
18 REM - LOWER LIMIT OF NGI AS H6 AND UPPER LIMIT OF
19 REM - NGI AS H7 IN LINE 130
20 REM - WEDGE ANGLE B AND FLUID PROPERTIES CONSTANT R
21 REM - IN LINE 140
22 REM
23 REM THE OUTPUT WILL CONSIST OF TWO TABLES GIVING
24 REM FGFG',FG"9,FLFL' AND FL" AS A FU.NCTION OF THE
25 REM DIIENSIONLES PARAMETERS NG AND NLPLUS A HEADING
26 REM OF THE MOST IMPORTANT PARAMETERS AND CONSTANTS.
27 REM
28 REM
100 DIM G0(1O1), GI(101), G2(101)9 G3(101)
105 DIM LO(101), Li(101), L2(101), L3(101)
110 GO(1)wO: ,1(1)--.S: G2(1)=0: G6"O: G7=2
11S H6w.9S: H7,1.0S
120 G4mG6: GS"G7
125 A-i: 8-1: R=200
130 ZuO: ZlO
135 HS=H6: H9-H7
140 H=(HBI+H9)/2
14S GBSG6: G9-G7
IS0 G3(1)=(GB+G9)/2
15S IF H-O THEN 400
160 IF Z < 3S THEN 180
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165 PRINT 'AFTER 35 ITERATIONS IN GAS LJNASLE TO MEET REQ'S0
170) PRINT HsG1(101),G2(101),G3(t)
17S COTO 495
180 HO=H/100
185 FOR I-I TO 100
190 HlsG2tI)*HO
195 H2oG3(I)*'HO
800 H3#40*(B4G2(1)*G2C1)-9-AIGl(I)*G3(I))
205 GI(I+1)=Gl(l)4H1
810 G2(l+l)=G2(I)eH2
215 C3(I41)G3(I)+H3
220 GO(I.1)oGO(I).HO
25 NEXT I
230 Z-Z.1
835 IF A99(G1(101)) < .00000001 THEN 855
240 IF G1(101) > 0 THEN 250
245 GS-G3(1): GOTO ISO
250 G9nG3(l): COTO 150
255 LO( 1)=0: Ll(l).C1(l01):L2(l).02(101): L3( 1)uG3(1O1)/R
260 Poo10
265 MOinM/ 100
270 FOR 1.1 TO 100
275 Ml=L2(1)4940
280 M2=L3 (1I) P1

290 LlI1)-Ll(I)*Ml
295 L2(I+1)-L,2(1)4M2
300 L3(4I)-L3(I)143
305 LO(I+1)=LO(I).MO
310 NEXT I
315 Z1-Z1+1
320 IF Zl< 3S THEN 33S
325 PRINT T AFTER 35 ITERATIONS IN LIG IMABLE TO M'EET REQ'9m
330 COTO 415
335 C5=L2(101)-1
340 IF HwO THEN 370
345 IF ASS(L3(101)) > .0001 THEN 355
350 IF A9S(CS) < .00001 THEN 410
355 IF CS >0HEN 36S
360 1490H: G6-G3 1): ZOO: GOTO 140
36S KS-H: G7-C3(l): ZOO: COTO 140
370 IF ASS(L3(101)) > .0001 THEN 380
37S IF ASS(C5) < .00001 THEN 410
380 IF CS > 0 THEN 390
38S GSOG3(1): COTO 395
390 G'3-G3(1): GOTO 39S
39S G3(1)=(G8+G9)/2
400 L3(1-CG3(1): LO(1)O0: Ll(1)=G1(1): L2(1)nL2(1)
405 COTO 260
410 PRINT 'LAM'INAR FLOW OVER WEDGE WITH SLOWING-
415 PRINT :PRINT :PRINT

41



420 PRINT U8 - mB
4 S PRINT "R - R
430 PRINT "FG(O) ",CG(1),XINTIAL LIMITS :"
435 PRINT "FGDPRIME(O)- ",G3(1),G4,GS
440 PRINT "NI a ",GO(10),HSH7
44S PRINT : PRINT : PRINT
450 PRINT "NG","FGN, FGPRIME , "FGDPRIMEN: PRINT
4S5 FOR Iu TO 101 STEP 10
460 PRINT GO(I),G1(I),G2(I),G3(I)
46S NEXT I
470 PRINT : PRINT : PRINT
47S PRINT "NL%"FL., m FLPRI'E, "FLDPRIME": PRINT
480 FOR I11 TO 101 STEP 10
48S PRINT LO(I),LI(I),L2(I),L3(I)
490 NEXT I
495 PRINT : PRINT : PRINT : PRINT a "9 u "END"
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Figure 6.5 Dimensionless velocity profiles
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Table 5.2 Comparison Between Single Fluid Flow
and Nickel (abb 8) [51

i i  fg'' 10)

8 fg(0) Program Nickel

0 0 0.4365 0.46

0.25 -.2 0.5888 0.60

0.25 -.5 0.4399 0.44

0.25 -1 0.2644 0.27

0.5 +1 1.5758 1.62
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Table 6.1 Comparison Between Wall Shear Stress
for Large Bowin Parameter and Wal
SHear stress for Single Fluid

B (0j)* Progra Nike (51

0 -1 0.02

0.2 -1 0.710.25

0.4 -1 0.4308 0.40

0.6 -1 0.500.53

0.8 -1 0.6729 0.66

1.0 -1 0.7767 0.76

0.2 -1.25 0.1877 0.18

0.4 -1.25 0.3336 0.33

0.6 -1.25 0.4593 0.45

0.8 -1.25 0.5716 0.57
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Table 6.2 Local Shear Stress Reduction (T/T0)
as a Function of Wedge Angle and

" Blowing Parameter for R - 200

f(o) -

0 0.2 0.4 0.6 0.8 1.0

0.005 0.508 0.385 0.331 0.299 0.276 0.259

0.01 0.348 0.252 0.212 0.187 0.171 0.158

0.015 0.265 0.188 0.156 0.137 0.124 0.114

0.02 0.215 0.150 0.124 0.108 0.0972 0.0894

0.03 0.155 0.107 0.0874 0.0759 0.0681 0.0624

0.04 0.122 0.0833 0.0676 0.0585 0.0524 0.0479

0.05 0.100 0.0681 0.0551 0.0476 0.0426 0.0389

0.075 0.0691 0.0468 0.0377 0.0325 0.0291 0.0266

0.1 0.0526 0.0355 0.0287 0.0247 0.0221 0.0202

0.15 0.0353 0.0239 0.0193 0.0167 0.0150 0.0138

0.2 0.0262 0.0179 0.0145 0.0127 0.0115 0.0106

0.35 0.0138 0.00978 0.00826 0.00744 0.00692 0.00656

0.5 0.00827 0.00634 0.00567 0.00534 0.00515 0.00502

0.75 0.00337 0.00351 0.00363 0.00372 0.00379 0.00386

1.0 0.000720 0.00212 0.00261 0.00289 0.00309 0.00324
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